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Human helminth infections are synonymous with impaired immune responsiveness

indicating suppression of host immunity. Using a permissive murine model of filariasis,

Litomosoides sigmodontis infection of inbred mice, we demonstrate rapid recruitment and

increased in vivo proliferation of CD41Foxp31 Treg cells upon exposure to infective L3

larvae. Within 7 days post-infection this resulted in an increased percentage of CD41

T cells at the infection site expressing Foxp3. Antibody-mediated depletion of CD251 cells

prior to infection to remove pre-existing ‘natural’ CD41CD251Foxp31 Treg cells, while not

affecting initial larval establishment, significantly reduced the number of adult parasites

recovered 60 days post-infection. Anti-CD25 pre-treatment also impaired the fecundity of

the surviving female parasites, which had reduced numbers of healthy eggs and micro-

filaria within their uteri, translating to a reduced level of blood microfilaraemia. Enhanced

parasite killing was associated with augmented in vitro production of antigen-specific IL-4,

IL-5, IL-13 and IL-10. Thus, upon infection filarial larvae rapidly provoke a CD41Foxp31

Treg-cell response, biasing the initial CD41 T-cell response towards a regulatory pheno-

type. These CD41Foxp31 Treg cells are predominantly recruited from the ‘natural’ regu-

latory pool and act to inhibit protective immunity over the full course of infection.
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Introduction

Chronic helminth infections are associated with impaired immune

responsiveness [1–4], and helminth parasites have been widely

attributed with the ability to manipulate and down-modulate

protective immune responses [5–7]. During human filarial infec-

tions down-regulation is mainly characterized by a loss of antigen-

specific proliferation together with impaired production of IFN-g
and IL-5 [8, 9], and IL-4 [10]. Regulatory roles have been ascribed

to both TGF-b and IL-10 [10–12], two cytokines closely implicated

in the activity [13, 14] and induction [13, 15–18] of Treg cells

raising the hypothesis the Treg cells mediate helminth-induced

immune suppression. Over the recent years, evidence has mounted

for Treg activity not only in filarial infections [10, 19–23] but also

among a range of other helminth pathogens including gut- and

muscle-dwelling nematodes [24–27] and schistosomes [28–36].
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The major functions of Treg cells are to limit pathology by

dampening immune inflammation, and more specifically to

control autoimmunity [13, 37]. A repercussion of their immune

down-regulatory function is that they can inhibit protective

immune responses required to clear infection [38, 39]. Two main

populations of Treg cells have been described. One subset are Tr1

cells defined by their production of IL-10 and considered to be

‘adaptive’ as they develop from naı̈ve T cells in the periphery

following antigen challenge [13]. The second population is of

CD41Foxp31 Treg cells whose regulatory phenotype is driven

by expression of the transcription factor Foxp3 [37, 40].

CD41Foxp31 Treg cells have two distinct origins. ‘Natural’ CD41

Foxp31 Treg cells become committed to a regulatory phenotype

within the thymus [41]. Foxp3 expression can, however, also be

induced in naı̈ve peripheral T cells [16–18], so that the CD41

Foxp31 phenotype includes cells derived through both ‘natural’

and ‘adaptive’ pathways.

Both Tr1-like and Foxp31 Treg cells are active during human

filarial [10, 19–21], and Schistosoma mansoni infections [29, 30],

suggesting that Tr1 and Foxp31 Treg cells act in concert. It is not yet

clear, however, what the respective roles of these cells are and

whether Foxp31 Treg cells found during human infections are of

natural or adaptive origins. Studies in murine models of helminth

infection have defined host-beneficial effects of Treg cells. Both Tr1-

like cells [28] and CD41CD251Foxp31 Treg cells play roles in

controlling egg-induced pathology during S. mansoni infection [22,

31–36]. Strikingly, the increased Treg-cell activity seen during

helminth infections can also down-regulate bystander inflammatory

responses and can protect against allergic inflammation [26, 42, 43]

and intestinal inflammatory disorders [27, 44].

The counter side is that while Treg cells may forestall patho-

genesis, they can also inhibit protective immunity impeding

effective parasite killing [39]. This trade-off is apparent during

S. mansoni infection, in which depletion of CD251 Treg cells

increases liver pathology while reducing the host’s egg burden,

indicating that the beneficial anti-inflammatory role of Treg is at

a cost to protective immunity [32]. The down-regulation of

protective immunity may not just reflect a host compromise,

however, and the presence of immunomodulatory Treg-cell

population provides a potential Achilles heel for parasites to

exploit. Helminth parasites produce homologues of mammalian

TGF-b [45–47] of which at least one is able to bind human TGF-b
receptors [46, 47] and could potentially directly drive a host

Treg-cell response.

An important new model of immunoregulation in filariasis is

Litomosoides sigmodontis infection of inbred mice, and we have

previously characterized CD41 T-cell responses in this system.

BALB/c mice are susceptible to L. sigmodontis, developing a fully

patent infection �50 days post-infection, patency being defined

as the presence of mature adult parasites within the pleural cavity

and microfilariae (Mf, transmission stage L1 larvae) circulating

within the blood [48, 49]. In contrast, resistant C57BL/6 mice

clear their parasites between days 40 and 50 post-infection and

never develop a patent infection. Notably, we found CD41CD251

Foxp31 Treg-cell activity in susceptible BALB/c mice during the

established adult stages (from 4 wk post-infection) of filarial

infection [23, 50]. Moreover, during the adult stage the CD41

effector T-cell (Teff cell) population at the infection site became

unresponsive to antigen, which was associated with high levels of

expression of both CTLA-4 and GITR. Once infection had estab-

lished, parasite killing could be promoted by depleting CD251

Treg cells, but only when performed in combination with an

agonistic anti-GITR mAb to provide co-stimulation through GITR

[50], or with a neutralising anti-CTLA-4 mAb to block co-inhi-

bition through CTLA-4 [23]. This requirement for a dual-

component treatment suggests that to disrupt established

immune regulatory pathways depletion of CD251 Treg cells alone

is insufficient, and that the CD41 Teff cell response must also be

targeted and revitalized.

Interestingly, while Tr1 cells and IL-10 play regulatory roles in

other helminth infections [19, 21, 28, 29, 35] neutralisation of

the IL-10R or IL-10 deficiency fails to promote killing of

L. sigmodontis parasites or restore T-cell responsiveness, except in

the absence of IL-4 [50, 51]. Thus, in the presence of an intact

Th2 response, immune-regulation during L. sigmodontis infection

appears to be largely IL-10 independent with CD41Foxp31 Treg

cells being the main active Treg cell inhibiting protective immu-

nity. For the development of successful vaccines or therapeutic

treatments to promote immunity or overcome regulation it is

therefore important to determine the source of CD41Foxp31 Treg

cells. Are they of ‘natural’ or ‘adaptive’ origins, and are they

generated from the initial point of infection by infective-stage L3

larvae or arise subsequently as chronic adult worm infection

reaches a more homeostatic state?

We now show that the infective L3 stage induce in vivo

proliferation of CD41Foxp31 Treg cells, which within 7 days of

infection translates to an increased percentage of CD41 T cells at

the infection site expressing Foxp3. Filarial infection thus favours

the development of CD41Foxp31 Treg cells and rapidly biases

CD41 T-cell responses towards a regulatory phenotype. Similar

increases in Foxp31 Treg cells occurred in both resistant C57BL/6

and susceptible BALB/c mice, indicating that immune failure is

not defined solely by CD41Foxp31 Treg-cell recruitment. CD41

Foxp3� Teff cells from resistant mice, however, showed

augmented levels of activation and in vivo proliferation compared

with susceptible animals, suggesting that they mount stronger

initial CD41 Teff-cell responses or are more resistant to CD41

Foxp31 Treg-mediated suppression. In contrast to established

infection where two-step treatments are required to break

immune-suppression, targeting the initial Treg-cell response

alone was sufficient to promote protective immunity. Antibody-

mediated depletion of ‘natural’ CD251Foxp31 Treg cells 7 days

prior to infection of susceptible BALB/c mice, while not affecting

larval establishment over the first 20 days, resulted in reduced

parasite burdens 60 days post-infection and increased parasite-

specific cytokine responses. Anti-CD25 treatment also reduced

the fecundity of the surviving worms and the incidence of mice

developing a patent infection. Thus, the CD41Foxp31 Treg-cell

responses that inhibit protective immunity to filarial parasites are

initiated very rapidly upon initial infection by the invading L3
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larvae and are largely recruited from the natural pool of CD41

Foxp31 Treg cells.

Results

Initial CD41 T-cell responses to L. sigmodontis are
biased towards Foxp31 Treg

In the L. sigmodontis model, CD41Foxp31 Treg cells were

previously studied during the chronic, established adult phase

(4 wk post-infection) and shown to play a functional role in

inhibiting protective immunity against the parasite [23, 50].

To determine whether the CD41Foxp31 Treg-cell response is

initiated immediately upon infection by the infective-stage

larvae, resistant C57BL/6 and susceptible BALB/c mice were

infected s.c. with 25 L. sigmodontis L3 parasites and autopsied on

days 7 and 12. Following s.c. inoculation, L. sigmodontis L3

migrate to the pleural cavity within 3–4 days post-infection and

molt to the L4 stage between days 8 and 12. To study T-cell

responses during these early stages of infection we sampled the

brachial LN (bLN) that drain the s.c. injection site, the thoracic

LN (tLN) draining the pleural cavity and the pleural cavity cells

representing the site at which infection becomes established.

Increased numbers of total CD41 T cells were seen in both

bLN and tLN at days 7- and 12-post-infection (Fig. 1A and B). As

would be predicted the bLN showed a larger initial response at

day 7 with the tLN cell numbers increasing at day 12 as the larvae

migrated from the skin to the pleural cavity. The CD41 T-cell

responses in the LN mirrored total cell recruitment (Supporting

Information Fig. 1). Despite larvae being present in the pleural

cavity at day 7 (data not shown), total cell numbers were not

significantly elevated until 12 days post-infection (Supporting

Information Fig. 1C). Interestingly, at day 7 only the resistant

C57BL/6 mice showed significantly increased numbers of CD41

T cells in the pleural cavity compared with the naı̈ve controls

(Fig. 1C). By day 12 post-infection, however, the CD41 T-cell

numbers were equivalently increased in both strains of mice,

consistent with previously published work [52].

Infection resulted in a significant expansion of CD41Foxp31

T-cell numbers in the bLN, tLN and pleural cavity (Fig. 1D–F).

Despite the increase in total CD41Foxp31 T-cell numbers within

the LN, the percentage of LN CD41 T cells expressing Foxp3 did

not change (data not shown), signifying that the Treg to Teff cell

balance was maintained by equivalent expansion of both CD41

Foxp3� Teff and CD41Foxp31 Treg-cell populations. In contrast,

within the pleural cavity, the percentage of CD41 T cells

expressing Foxp3 in both resistant and susceptible mice was

significantly increased upon infection (Fig. 2A and B), indicating

that infection favours a CD41Foxp31 Treg-cell response over a

CD41Foxp3� Teff response. Thus, at the infection site, the local

CD41 T-cell response to L. sigmodontis infection becomes rapidly

biased towards a Foxp31 Treg phenotype.

The majority of CD41Foxp31 Treg cells constitutively express

CD25; however, a proportion are known to be CD25�. It was

therefore important to test whether infection expanded both

CD251 and CD25� Treg cells. The expansion in the CD41Foxp31

population occurred within both the CD251 and CD25� T-cell

populations (Fig. 2C), with the proportions of CD25� and CD251

cells expressing Foxp3 remaining constant (data not shown).

Importantly, the percentage of CD41CD251 T cells expressing

Foxp3 at days 7 and 12 post-infection remained equivalent to

Figure 1. Recruitment of CD41 T cells and CD41Foxp31 Treg cells to the draining LN and pleural cavity during L. sigmodontis infection. L. sigmodontis
infected (closed symbols) and naı̈ve (open symbols) BALB/c (circles) and C57BL/6 (squares) mice were autopsied on days 7 and 12 post-infection.
Total CD41 T cells (A–C) and total CD41Foxp31 Treg (D–F), within the bLN (A and D), tLN (B and E), and pleural cavity (C and F) were counted.
Symbols represent individual animals, and lines represent mean values. Graphs show pooled data from two experiments for all time points and
strains, except BALB/c D12 data pooled from three experiments. ��po0.01, ANOVA, ���po0.001, ANOVA, based on combined data from experiments
depicted.
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naı̈ve animals, demonstrating that at these time points CD25 is

still an effective alternative marker for identifying Foxp31

T cells and that the CD41CD251 T-cell population has not been

diluted out by CD41CD251Foxp3� Teff cells (Fig. 2D).

Filarial infection induces in vivo proliferation of Foxp31

Treg cells

The expansion in the CD41Foxp31 Treg-cell population during

infection could reflect enhanced proliferation of these cells

in vivo. To address this we administered BrdU to C57BL/6 and

BALB/c mice from days 3 to 7 to label dividing cells in vivo and

autopsied them on day 7. The percentage of pleural cavity

(ple)CD41Foxp31 Treg cells that took up BrdU significantly

increased upon infection in both susceptible BALB/c and resistant

C57BL/6 hosts (Fig. 3A and B), indicating that infection is

actively stimulating CD41Foxp31 Treg cells to divide. Thus,

increased proliferation of CD41Foxp31 Treg cells at least partly

explains their expansion upon infection, although other factors

such as recruitment or increased survival may also be involved.

L. sigmodontis infection also stimulates a Teff-cell response in

both mouse strains, as shown by the augmentation in pleCD41

Foxp3� Teff cells incorporating BrdU following infection

(Fig. 3B). The CD41Foxp3� Teff response in the susceptible

BALB/c mice was, however, weaker than that in the resistant

C57BL/6 mice based on the percentage of CD41Foxp3� Teff cells

taking up BrdU. In accord with the muted levels of CD41Foxp3�

Teff-cell proliferation in the BALB/c mice, when the total

numbers of CD41Foxp3� Teff cells in the pleural cavity were

calculated at day 7 post-infection, significant expansion of the

CD41Foxp3� population was evident only in the resistant

C57BL/6 mice (Fig. 3C).

CD41Foxp31 Treg from infected animals show
increased levels of activation

We next inquired whether CD41Foxp31 Treg and CD41Foxp3�

Teff cells displayed other markers of activation during infection,

in addition to heightened proliferation. The percentage of both

Foxp31 and Foxp3� cells expressing the co-stimulatory molecule

ICOS in the pleural cavity (Fig. 4A and E) and bLN (data not

shown) of BALB/c mice was significantly increased at 7 days post-

infection. Expression of the co-inhibitory receptor PD-1 was also

up-regulated among pleFoxp31 and pleFoxp3� populations from

Figure 2. L. sigmodontis infection increases the percentage of CD41

Foxp31 T cells within the pleural cavity. Cells were isolated from the
pleural cavity of L. sigmodontis infected and naı̈ve BALB/c and C57BL/6
mice on days 7 and 12 post-infection. One representative experiment is
shown of at least two independent repeats for each time point/strain.
Symbols represent individual animals and lines represent median
values. (A) FC plots from representative BALB/c mice showing
expression of Foxp3 and CD25 at D7. (B) Percentage of pleCD41 T cells
from naı̈ve (open symbols) and infected (closed symbols) BALB/c
(circles) and C57BL/6 (squares) mice expressing Foxp3. (C) Percentage of
Foxp31CD251 (circles) and Foxp31CD25� (squares) T cells within the
pleCD41 T-cell population of naı̈ve (open symbols) and infected (closed
symbols) BALB/c mice 7 days post-infection. (D) Percentage of pleCD41

CD251 T cells from naı̈ve (open symbols) and infected (closed symbols)
BALB/c mice expressing Foxp3 12 days post-infection. zpo0.05 (MWW),
zzpo0.01 (MWW).

Figure 3. L. sigmodontis infection results in increased proliferation of
CD41Foxp31 T cells in vivo. Pleural cavity cells were isolated from
L. sigmodontis infected and naı̈ve BALB/c and C57BL/6 mice 7 days post-
infection. Panels show one representative experiment of two indepen-
dent repeats. (A) FC plots from representative naı̈ve and infected BALB/
c mice showing expression of Foxp3 and uptake of BrdU by pleCD41 T
cells. (B) Percentage of pleCD41Foxp31 and pleCD41Foxp3� T cells from
naı̈ve (open symbols) and infected (closed symbols) BALB/c (circles)
and C57BL/6 (squares) mice positive for BrdU uptake 7 days post-
infection. Symbols represent individual animals and lines represent
mean values. The effects of infection status and strain on BrdU uptake
was analysed using 2-way ANOVA. ���Significant difference in BrdU
uptake between naı̈ve and infected mice with no difference between
strains, po0.001. ~~~ Significant difference in BrdU uptake between
naı̈ve and infected mice (po0.001) and between BALB/c and C57BL/6
mice (po0.001). (C) Total number of CD41Foxp3� T cells isolated from
the pleural cavity of naı̈ve (open symbols) and infected (closed
symbols) BALB/c (circles) and C57BL/6 (squares) mice 7 days post-
infection. Symbols represent individual animals and lines represent
mean values. yyypo0.001, unpaired t-test.
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infected BALB/c mice demonstrated by significant increases in

frequency (Fig. 4B and F) and intensity of expression (Fig. 4G).

Similarly, a significant accretion of both the percentages of

pleCD41CD251CTLA-41 and pleCD41CD25�CTLA-41 T cells

was seen in BALB/c mice by 12 days post-infection (Fig. 4C

and H). At this stage of infection CD25 remains an effective

surrogate marker for Foxp31 Treg cells (Fig. 2D).

In comparing T-cell expression patterns between resistant and

susceptible genotype mice, a broadly similar profile was observed

except in the case of the co-stimulatory molecule GITR. While

GITR expression within pleCD41CD251 Treg cells was up-regu-

lated in both resistant and susceptible strains of mice alike, CD41

CD25– Teff cells showed significantly higher GITR levels only in

resistant C57BL/6 mice (Fig. 4D, I and J). Thus, although CD41

Foxp31 Treg-cell responses are broadly equivalent in the two

strains, the susceptible BALB/c mouse is characterized by

diminished effector cell proliferation and activation within the

context of lower total T-cell numbers after infection.

L. sigmodontis expanded CD41CD251 Treg cells are
functionally suppressive

To verify that the L. sigmodontis expanded CD41Foxp31 Treg-cell

population is functionally suppressive, we performed an in vitro

suppression assay. At day 12 post-infection CD25 is still an

effective marker for CD41Foxp31 Treg cells (Fig. 2D), and in the

absence of a direct marker for Foxp3 we purified BALB/c CD41

CD251 and CD41CD25- T cells from the pleural cavity 12 days

post-infection, and from the spleens of naı̈ve mice. The ability of

each population of CD41CD251 T cells to suppress the anti-CD3-

stimulated proliferation of the CD41CD25� T cells was then

compared. As expected the CD41CD251 T cells from the spleens

of naı̈ve mice were able to inhibit the proliferation of the

naı̈ve CD41CD25� T cells (Fig. 5). Similarly, pleCD41CD251

T cells of infected mice blocked proliferation of pleCD41CD25�

T cells, demonstrating that CD41CD251 phenotype cells from

infected mice act in a regulatory manner.

Figure 4. Activation phenotype of CD41Foxp31 Treg and CD41Foxp3- Teff cells during filarial infection. Pleural cavity cells were isolated from
naı̈ve (open symbols) and infected (closed symbols) BALB/c and C57BL/6 mice and the expression of ICOS (A and E), PD-1 (B, F and G), CTLA-4 (C and
H) and GITR (D, I and J) by CD41 Treg cells (Foxp31 or CD251) and CD41 Teff cells (Foxp3� or CD25�) was assessed by FC. Results for ICOS and PD-1
are taken 7 days post-infection. Results for CTLA-4 and GITR are taken 12 days post-infection. FC plots show representative stains from BALB/c
mice. Graphs show one representative experiment of two independent repeats. Symbols represent individual animals, and lines represent mean
values. ypo0.05, yypo0.01, yyypo0.001 (unpaired t-test).
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PC61 anti-CD25 treatment effectively depletes CD41

Foxp31 Treg cells in vivo

The rapid increase in CD41Foxp31 Treg during the early stages

of L. sigmodontis infection led us to hypothesize that natural

CD41Foxp31 Treg cells inhibit the development of protective

immunity. To test this we used an anti-CD25 (clone PC61)

antibody to deplete susceptible BALB/c mice of CD41CD251 Treg

cells. PC61 was administered 7 days prior to L. sigmodontis

infection to target pre-existing ‘natural’ CD41 Foxp31 Treg cells

and to minimize effects PC61 may have on any cells that up-

regulate CD25 upon infection.

Recently, the in vivo effectiveness of the two anti-CD25 mAb

clones, PC61 and 7D4, in depleting Treg cells has been subject to

controversy [53–56]. In particular, 7D4 has been shown to down-

regulate CD25 expression on CD41Foxp31 Treg cells without

causing depletion [54, 55]. While PC61 does clearly reduce the

numbers of CD41Foxp31 Treg cells, depletion is not complete and

its effectiveness varies between studies [54, 57]. We therefore

wanted to confirm the efficacy of PC61 treatment in depleting CD41

Foxp31 Treg cells in our model. PBL were taken 6 days post-PC61

treatment (1 day prior to infection) and stained for CD4, CD25 and

Foxp3. PC61 anti-CD25 treatment reduced CD41CD251 cell levels

by 85% (from 5.970.6 to 0.970.1%), and levels of CD41Foxp31

cells by 72% (from 9.771.0 to 2.770.6%). CD25 depletion had

little effect on the CD41Foxp31CD25� Treg-cell population, which

largely accounted for residual CD41Foxp31 Treg-cell numbers after

PC61 treatment (data not shown).

The effects of PC61 pre-treatment on the initial Treg-cell

response to infection were assessed at day 12 post-infection (19

days post-depletion). PC61 treated naı̈ve mice had an 85%

Figure 5. L. sigmodontis recruited Treg are suppressive in vitro. Pooled
CD41CD251 and CD41CD25� T cells were purified from the pleural
cavity of L. sigmodontis-infected BALB/c mice 12 days post-infection
(Ple), and from the spleens of naı̈ve BALB/c mice (NS). The CD41CD251

and CD41CD25� T-cell populations were cultured alone or mixed in a
1:1 ratio and their proliferation in response to medium alone (open
bars) or anti-CD3 (closed bars) measured. Figure shows mean and
standard deviation of cultures in triplicate.

Figure 6. Anti-CD25 treatment using clone PC61 effectively depletes CD41Foxp31 Treg cells in naı̈ve and L. sigmodontis-infected mice. BALB/c mice
were treated with an anti-CD25-depleting antibody or rat IgG control Ab 7 days prior to infection. Pleural cavity cells were isolated 12 days post-
infection and stained for CD4, CD25 and Foxp3. Panels A–D show one representative experiment of 2. Symbols represent individual animals and
lines represent mean values. Total number of pleCD41Foxp31 (A), pleCD41Foxp31CD251 (B) and pleCD41Foxp31CD25� (C) T cells of naı̈ve (open
symbols) and infected (closed symbols) BALB/c mice that had been pre-CD25 depleted (squares) or treated with control rat IgG (circles). (D)
Percentage of pleCD41 T cells expressing Foxp3 in naı̈ve (open symbols) and infected (closed symbols) mice following CD25 depletion (squares) and
IgG control treatment (circles). In panels A–D the effects of infection and treatment were analysed using two-way ANOVA. ~~~Significant
difference due to treatment (po0.001) and infection (po0.001). ���Significant difference due to infection status (po0.001), but no significant
difference caused by treatment. (E) Percentage of CD41 T cells expressing Foxp3 in the tLN of naı̈ve untreated (open squares), infected IgG-treated
(closed circles), or infected and CD25 pre-depleted BALB/c mice (closed squares) 60 days post-infection. Panel shows pooled data from three
independent experiments. ��po0.01, two-way ANOVA based on combined data from three experiments.
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reduction in the total numbers of CD41Foxp31 Treg cells in the

pleural cavity (Fig. 6A). They also had an 81% reduction in the

total numbers of CD41Foxp31 T cells in the bLN and a

54% reduction in the tLN (data not shown). Thus, there were still

significant reductions in CD41Foxp31 T-cell numbers in naı̈ve

mice 19 days post-PC61 treatment. In common with anti-CD25

treatments during Plasmodium yoelii infection [54], subsequent

infection of PC61 treated mice with L. sigmodontis resulted in a

faster repopulation of CD41Foxp31 cells compared with the

naı̈ve controls (Fig. 6A). It was, however, notable that the total

numbers of CD41Foxp31T cells in the pleural cavity of PC61

treated and infected BALB/c mice were still diminished by 65%

compared with the IgG-treated infected controls (Fig. 6A), and

that there were reductions of 71 and 62% in the tLN and bLN,

respectively (data not shown).

Relating the reduction in CD41Foxp31 T-cell numbers to

CD25 expression showed that all of the depletion occurred in

the CD41Foxp31CD251 population (Fig. 6B and C). Within

the pleural cavity, PC61 treatment reduced the total numbers

of CD41Foxp31CD251 T cells by 94% in naı̈ve mice, and by 80%

in mice subsequently infected with L. sigmodontis (Fig. 6B).

Within the tLN and bLN CD41Foxp31CD251 Treg cells were

reduced by 73 and 86%, respectively, in naı̈ve mice, and by 79

and 73%, respectively, in mice that were subsequently infected

(data not shown). In contrast, PC61 treatment had little effect

on the levels of CD41Foxp31CD25� Treg cells, which expanded

normally in response to infection in the PC61-treated mice

(Fig. 6C). Despite the lack of effect on the CD25�Foxp31 Treg

cells, PC61-treatment prevented the preferential expansion in

CD41Foxp31 Treg cells upon infection with the percentage of

pleCD41 T cells expressing Foxp3 in CD25-depleted, infected

mice being significantly less than that of both the naı̈ve and

infected IgG control mice (Fig. 6D). Strikingly, the percentage of

CD41 T cells expressing Foxp3 in the tLN of anti-CD25-depleted

and infected BALB/c mice was also significantly decreased 60

days post-infection compared with the infected IgG controls

indicating a long-term effect of PC61 treatment (Fig. 6E).

Thus, in our system PC61 anti-CD25 treatment was effective

at depleting CD41Foxp31CD251 T cells in vivo, resulting

in loss of the majority of the CD41Foxp31 T-cell population.

Importantly, PC61-treated mice subsequently infected with

L. sigmodontis had greatly reduced numbers of CD41Foxp31

T cells, and treatment prevented the early infection-induced bias

towards CD41Foxp31 Treg cells in the pleural cavity.

CD41Foxp31CD251 natural Treg inhibit protective
immunity to L. sigmodontis

Following confirmation that PC61 treatment depletes CD41CD251

Foxp31 Treg cells in vivo we assessed the effects of depleting CD41

CD251 Treg cells 7 days prior to infection on parasite survival and

Figure 7. CD41CD251Foxp31 natural Treg inhibit protective immunity to L. sigmodontis infection. BALB/c mice were treated with a depleting anti-
CD25 Ab (closed symbols) or rat IgG (open symbols) 7 days prior to L. sigmodontis infection. Parasite burdens were assessed on days 12 (A), 20 (B) and
60 (C) days post-infection. For days 12 and 60 figures show pooled results from three and four independent experiments, respectively, using
infective doses of 25L3. The results at day 20 show two independent experiments using infective doses of 25 and 40L3. Symbols represent
individual animals, and lines represent mean values. ��Significant difference in parasite recoveries between treatment groups (po0.01, ANOVA,
based on combined data from four experiments). (D) Number of Mf/ml in the blood of microfilaraemic mice from experiment 4. Symbols represent
individual animals, and lines represent median values. zSignificant different between treatment groups (po0.05, MWW). (E–G) Semi-quantitative
scores for the number of healthy eggs (E), Mf (F) and aborted eggs (G) in the uterus of female parasites recovered 60 days post-infection. Panels
show data pooled from three independent experiments. Symbols represent individual female parasites, and lines represent median values.
zzSignificant difference between treatment groups (po0.01, MWW).
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fecundity. No immediate effect on parasite recoveries was seen in

CD25-depleted BALB/c mice at days 12 (Fig. 7A) or 20 (Fig. 7B)

post-infection. Parasite growth, defined by parasite length, was also

unaffected at these time points (data not shown).

Although CD41CD251 Treg cells, which form the majority of

the Foxp31 T cells, do not appear to play a unique role in initial

larval survival and establishment, pre-CD25 depletion did affect

the subsequent adult stage of infection and reproducibly inhib-

ited the ability of the parasites to establish a fully patent infec-

tion, albeit with a different efficacy of treatment between

experiments. By 60 days post-infection, parasite recoveries were

significantly reduced by 31% across four experiments (Fig. 7C).

Despite decreased parasite numbers, treatment had a limited

effect on parasite growth, with a significant reduction in length

seen in female parasites in only one of the four experiments (data

not shown).

A more pervasive effect of pre-CD25 depletion was observed

as a decrease in the number of mice that developed patent

infections, as defined by the presence of Mf circulating in the

blood stream. The incidence of patency was reduced following

treatment in two out of three experiments and in one of these

experiments was completely prevented (Table 1). We should note

that the assessment of patency is limited to three of the four

experiments because the IgG control animals in one experiment

failed to develop blood Mf. In total, and as previously recorded

[58], 69% of the IgG control mice developed a patent infection,

compared with 33% in the pre-CD25 depleted mice. Even in the

one experiment in which the incidence of patency was unaffected

by anti-CD25 treatment (Experiment 4), the concentration of Mf

circulating in the bloodstream was significantly reduced

(Fig. 7D).

To determine whether the reduced incidence and levels of Mf

in the blood of treated mice was due to impaired female fecundity

or increased killing of the Mf once released into the host we semi-

quantitatively scored the numbers of healthy eggs, Mf, and

aborted eggs within the uteri of the surviving female parasites.

Female parasites recovered from the anti-CD25 depleted mice

had significantly fewer healthy eggs (Fig. 7E) and Mf (Fig. 7F) in

their uteri compared with female parasites recovered from IgG

treated control mice. The uteri of female parasites from anti-

CD25 treated mice also tended to contain higher numbers of

aborted eggs than did the uteri of female parasites from IgG-

treated control mice (Fig. 7G). Thus, CD41CD251 natural Treg

inhibit protective immunity towards filarial parasites, and their

depletion results in a significant impairment of parasite survival

and fecundity.

Parasite killing is associated with an enhanced
immune response

We were interested to determine whether the increased

parasite killing caused by depletion of CD251 Treg cells was

associated with enhanced immune responses. Depletion of CD25
1 Treg cells prior to infection of susceptible BALB/c mice resulted

in an up-regulation of GITR expression by CD41CD25� Teff

cells at days 12 (Fig. 8A) and 20 (Fig. 8B) post-infection,

recapitulating the Teff phenotype of the resistant C57BL/6

mouse (Fig. 4J). Thus, natural CD251Foxp31 Treg cells appear

to inhibit Teff-cell activation during the initial stage of infection.

CD251 T-cell depletion did not, however, translate to early

increases in total CD41 T-cell numbers at the infection site or

draining LN, or to antigen-specific cytokine production (IL-4,

IFN-g, IL-5 and IL-10) at days 12 or 20 post-infection (data

not shown). When cytokine production by tLN cells was assessed

60 days post-infection, at the time when parasite killing was

enhanced (Fig. 7), the pre-infection anti-CD25 depleted

mice were found to produce significantly increased levels of

IL-4, IL-5, IL-13 and IL-10 in response to L. sigmodontis antigen

(Fig. 8C–F). Anti-CD25 treatment did not result in increased

antigen-specific proliferation in vitro at any time point (data

not shown). Thus, depletion of CD251 Treg prior to

infection does result in enhanced antigen-specific immunity;

however, except for changes in GITR expression at days 12

and 20 this was not manifest until the adult stages of infection,

at which time deficits in parasite viability and fecundity

became evident.

Discussion

The involvement of Treg cells during chronic stages of human

filarial infections is increasingly evident [10, 19–21], supporting

the hypothesis that this T-cell phenotype contributes to the

immune suppression so characteristic of helminth infections

[5–7]. We have shown that CD41Foxp31CD251 Treg cells are

active in susceptible BALB/c mice during the adult stages of

L. sigmodontis infection and inhibit protective immune responses

resulting in enhanced parasite survival [23, 50]. It is therefore

important to understand the origins of Foxp31 Treg-cell

responses, whether they are generated from the initial point of

infection by infective-stage L3 larvae or arise subsequently as

infection reaches stable chronicity, as well as whether they are

recruited from the pool of ‘natural’ Foxp31Treg or induced from

naı̈ve T cells. We now demonstrate that the CD41Foxp31 Treg-

cell response is induced by the infective L3 larvae immediately

Table 1. Incidence and percentage of anti-CD25-depleted and IgG-
treated mice developing blood microfilaraemia 60 days post
L. sigmodontis infection

Treatment

IgG Anti-CD25

Incidence % Incidence %

Exp. 1 4/5 80 0/4 0

Exp. 3 3/5 60 1/5 20

Exp. 4 4/6 67 4/6 67

Combined 11/16 69 5/15 33
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upon infection. Recruitment of natural CD41Foxp31CD251 Treg

cells forms a major component of this response, and depleting

natural CD41CD251 Treg cells prior to infection enhances

parasite killing.

Initial exposure to L. sigmodontis L3 larvae preferentially

drove a CD41Foxp31 Treg-cell response, skewing the CD41

T-cell response at the infection site (pleural cavity) towards a

Foxp31 Treg-cell phenotype within the first 7 days of infection.

This Treg-cell bias was distinguished by increased in vivo

proliferation and total numbers of CD41Foxp31 Treg cells

in the pleural cavity and draining LN, and most notably by an

increased percentage of pleCD41 T cells expressing Foxp3.

During Leishmania major infection, a similar imbalance in the

ratio of CD41Foxp31 to CD41Foxp3� T cells results in a failure of

sterilising immunity and the persistence of long-term low-level

infections [59, 60]. Long-lived helminth infections are also

associated with outgrowth of CD41Foxp31 Treg cells in draining

LN during Heligmosomoides polygyrus infection [25] and around

muscle-encysted Trichinella spiralis larvae [24]. Thus, we hypo-

thesized that the rapid recruitment of CD41Foxp31 Treg cells

during the initial stages of L. sigmodontis infection impairs the

generation of CD41 Teff-cell responses and so inhibits parasite

killing.

The role of CD41Foxp31 Treg cells in promoting the survival

of L. sigmodontis was confirmed using an anti-CD25 antibody to

deplete CD41CD251Foxp31 Treg cells from BALB/c mice prior to

infection. This strain is fully susceptible to L. sigmodontis infec-

tion, reaching patency (bloodstream Mf) around 50 days post-

infection [48, 49]. Although treatment did not notably affect

early larval establishment, anti-CD25-depleted BALB/c mice

showed reduced parasite burdens 60 days post-infection. The

efficacy of treatment was further confirmed when the surviving

female parasites from anti-CD25-treated mice were found to have

reduced fecundity. This resulted in a lower proportion of anti-

CD25-depleted mice developing fully patent infections. The

ability to increase killing of L. sigmodontis by depleting CD251

cells prior to infection infers that recruitment of natural CD41

Foxp31 Treg forms an important component of the early Treg-

cell response to filarial larvae.

The promotion of an anti-fecundity effect highlights a

consistent and significant aspect of immunity to helminths. For

example, in Schistosoma haematobium infections, egg output

declines in a T-cell-dependent manner [61], while fecundity of

H. polygyrus is raised following anti-CD4 depletion [62]. IL-4 is

an important component in the regulation of H. polygyrus egg

production [63] and is also required to control microfilarial

output in Brugia pahangi [64] and L. sigmodontis [65].

Anti-fecundity effects have been replicated by passive

transfer of immune serum [66] and are also observed

in a number of recombinant anti-helminth vaccination trials

[67, 68]. Reduction of parasite fertility may therefore be a

sensitive, and quantitative, measure of host immunity, and

Figure 8. CD41CD251Foxp31 Treg inhibit antigen-specific immunity. BALB/c mice were treated with a depleting anti-CD25 mAb (closed symbols)
or rat IgG (open symbols) 7 days prior to L. sigmodontis infection. Symbols represent individual animals and lines represent mean values. (A) The
percentage of pleCD41CD25� T cells expressing GITR at day 12 post-infection. (B) Percentage of pleCD41CD25� T cells expressing GITR at day 20
post-infection. Figure shows results from two individual experiments (represented by different symbols). (C–F) In vitro production of IL-4 (C), IL-5
(D), IL-13 (E) and IL-10 (F) in response to stimulation with LsAg by tLN cells isolated 60 days post-infection. Background cytokine production by
medium controls has been subtracted. Panels show results from three or four independent experiments. yypo0.01, t-test. �Significant difference
between treatment groups (po0.05, ANOVA). ���Significant difference between treatment groups (po0.001, ANOVA). Two-way ANOVA was
performed across combined data from experiments depicted in the individual panels.
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one which becomes evident even where the immune system is not

yet able to kill the adult worm. Depletion of CD251 Treg may

remove a major restraint on anti-fecundity effects, resulting in

uplift in reactivity and a significant loss of parasite reproductive

capacity.

Despite the clear attenuating effects of depleting CD251 Treg

prior to infection, it is notable that over the first 20 days the larval

stages were unaffected, and even at day 60 the clearance of

adults was incomplete. Several factors may contribute to this

finding. One possibility is that while CD41Foxp31CD251 cells

form the majority of the CD41Foxp31 population, anti-CD25

treatment had very little effect on the CD41Foxp31CD25� Treg

cells, which expanded normally upon infection of anti-CD25-

depleted mice. These remaining CD41Foxp31CD25� cells may

have been sufficient to still impact on immunity. Alternatively,

L. sigmodontis infection may also stimulate the production of

inducible CD41Foxp31 Treg cells that act in concert with

the ‘natural’ CD41Foxp31 Treg. Induced CD41Foxp31 Treg cells

would not have been targeted by the anti-CD25 treatment

given prior to infection and thus may still have been able to

inhibit the CD41 Teff cells. The increases in CD41Foxp31 Treg

cells in the anti-CD25 treated mice, however, were slight and if

CD41Foxp31 Treg cells play a major role in larval survival over

the first 20 days it is likely that an effect would have been seen

following treatment. An explanation that we favour is that filarial

infections use many different means to inhibit host immunity

including targeting DC [69, 70], recruiting suppressive

macrophages [71, 72] and releasing immunomodulatory mole-

cules [47, 73]. Thus, we suggest that the recruitment of natural

CD41Foxp31 Treg represents one of numerous levels of immune

down-regulation and so their depletion only partially restores

protection.

The promotion of protective immunity though a single treat-

ment with anti-CD25 prior to infection contrasts with the inef-

fectiveness of solely administered anti-CD25 during the

established adult stage of infection, 28 days post-infection [50].

During adult L. sigmodontis infection, alongside active CD41

Foxp31 Treg-cell responses, CD41 Teff cells develop an antigen-

specific hypo-responsive phenotype resulting in two layers of

T-cell regulation [23, 50]. Evidence for interplay between

Foxp31 Treg cells and T-cell anergy is also found in chronic

human filarial infections [10]. Once established, L. sigmodontis

infection can only be curtailed with anti-CD25 treatment

when combined with boosting the CD41 Teff-cell response by

providing co-stimulation through an agonistic anti-GITR mAb

[50] or blocking inhibitory signals through CTLA-4 [23]. The

success of single pre-infection anti-CD25 treatments may reflect

the fact that Treg cells were depleted before CD41 Teff cells

develop a hypo-responsive phenotype, and thus the additional

anti-GITR or anti-CTLA-4 treatments were not required. Alter-

natively, CD41Foxp31 Treg cells may induce CD41 Teff cells to

become hypo-responsive and thus their depletion prior to

infection may prevent the development of T-cell hypo-respon-

siveness. This indicates that the timing of anti-CD25 treatment is

critical in determining its effectiveness and that infection

becomes more difficult to treat once immune-regulatory path-

ways have established.

The implication that other immune down-regulatory

mechanisms are acting alongside Treg cells to permit larval

establishment fits with the observation that both resistant C57BL/6

and susceptible BALB/c mice mounted a similar initial CD41

Foxp31 Treg-cell response. Thus, recruitment of Treg per se does

not explain the difference between the resistant and susceptible

phenotypes. Instead the strain differences observed lay in the

CD41 Teff-cell population. Within the first 12 days, CD41CD25�

Teff cells from resistant C57BL/6 mice up-regulated expression of

GITR in response to infection, whereas those from the susceptible

BALB/c mice did not. The up-regulation of GITR in C57BL/6 mice

was also associated with greater in vivo proliferation of the CD41

Foxp3� Teff cells. This suggests that the resistant C57BL/6 mice

are more effective at priming their CD41 T-cell response than the

susceptible BALB/c mice or are more resilient to the initial

suppressive effects of the filarial L3 parasites.

The lack of effect of anti-CD25 depletion on antigen-specific

cytokine responses within the first 20 days of infection is inter-

esting given that treatment promoted parasite killing. Depletion

of CD251 cells prior to infection with B. pahangi does result in an

increased Th2 response 12 days post-infection, indicating that

natural Treg can inhibit early Th2 responses to filarial parasites

[74]. Increased L. sigmodontis-specific Th2 responses were seen

in anti-CD25-depleted BALB/c mice 60 days post-infection

(67 days post-depletion), and so in L. sigmodontis infection the

immunological effects of the CD25 depletion take time to become

apparent. One change in T-cell phenotype that did occur early

was in the expression of the co-stimulatory molecule GITR by

CD41 Teff cells, which increased upon infection in the anti-CD25-

depleted BALB/c mice. This indicates that in the absence of CD41

CD251Foxp31 Treg the BALB/c CD41 Teff-cell response is

primed more effectively, recapitulating the resistant C57BL/6

phenotype. If multiple mechanisms are involved in down-regu-

lating host immunity during infection, then these initial effects of

the anti-CD25 depletion on T-cell priming may be masked.

T-cell co-stimulatory signals through GITR are therefore

linked with resistance to filarial parasites in the larval as well as

the adult stages of L. sigmodontis infection. GITR co-stimulation

has been shown to render CD4 Teff cells resistant to suppression

by CD41Foxp31 Treg [75–77]; thus early up-regulation of GITR

by C57BL/6 mice may assist their Teff cells in overcoming

increased CD41Foxp31 Treg-cell activity leading to their

resistant phenotype. In contrast, by failing to up-regulate GITR

the CD41Foxp3� Teff cells of susceptible BALB/c mice may be

left vulnerable to the expanded CD41Foxp31 Treg cells.

Moreover, the restored GITR expression upon infection

of anti-CD25-depleted BALB/c mice indicates that CD41CD251

Foxp31 Treg cells themselves inhibit GITR up-regulation. In this

scenario, succumbing to Treg-mediated suppression makes Teff

cells more susceptible to suppression reinforcing the susceptible

phenotype.

Altogether these data indicate that how quickly and effectively

Teff responses are initiated will determine the resilience of the
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CD41 Teff cells to immune-suppression and may set the basis for

immune responses throughout infection. Incorrect priming of

T cells leads to an anergic phenotype [78]; thus an initial failure

to prime a sufficient effector response may result in hypo-

responsiveness later in infection. If the removal of Treg cells

results in more robust T-cell priming, while the immunological

effects may be initially masked by other regulatory mechanisms,

then the T-cell response would be more resistant to parasite-

induced immune suppression throughout infection. Although it

may still take time for the CD41 Teff response to build to a

threshold strong enough to overcome regulation, stronger initial

priming would eventually equate to more rapid killing of the

parasite. Our data thus suggest that the initial T-cell priming

events to the invading L3 larvae are critical in defining immunity

to the later stages of infection.

In conclusion, the CD41Foxp31 Treg-cell response that

inhibits protective immunity to filarial parasites is driven by

the invading L3 larvae immediately upon contact with the host

and is recruited largely from the pre-existing pool of natural

Treg cells. This results in the initial CD41 T-cell response

becoming biased towards a Foxp31 phenotype. In contrast to

an established adult L. sigmodontis infection, anti-CD25 treat-

ment alone can promote protective immunity when given prior

o infection to dampen the initial CD41Foxp31 Treg-cell response.

These data indicate that the initial CD41 T-cell response to filarial

parasites is important in determining infection outcome and that

it is easier to prevent the induction of immune-regulation than to

reverse established immune-regulatory networks. This has

important implications for control of infection, suggesting that

prophylactic treatments will be more effective than post-infection

therapies.

Materials and methods

Mice and parasites

Female BALB/c and C57BL/6 mice were used at 6–8 wk

of age and maintained in individually ventilated cages. The L.

sigmodontis life cycle was maintained in gerbils using the mite

vector Ornithonyssus bacoti [49]. Mice were inoculated s.c.

on the upper back with 25 infective L. sigmodontis L3 larvae. In

one experiment a dose of 40 L3 was used and is indicated

in the results. Parasites were recovered by pleural lavage and

fixed in hot 70% ethanol for morphological analysis [49].

The analysis of fecundity of female L. sigmodontis parasites

followed the method of Bretonet al. [79]. The numbers

of Mf, healthy eggs and aborted eggs within the anterior,

median and posterior of the uterus were semi-quantitatively

scored on scales of 0–5, 0–3 and 0–3, respectively. Each region’s

scores were summed giving a total possible Mf score of 15 and

egg score of 9. To quantify blood Mf, 30 mL of tail blood was

collected in FACS lysing solution (Becton-Dickinson). L. sigmo-

dontis whole worm antigen (LsAg) was prepared by collecting the

PBS-soluble fraction of homogenized adult male and female

worms.

In vivo antibody and BrdU treatments

Mice received 1 mg of anti-CD25 mAb (PC61, in house) or rat IgG

(Sigma-Aldrich) 7 days prior to infection. For BrdU treatment,

mice received an i.p. injection of 1 mg BrdU (Sigma-Aldrich) in

PBS on day 3 post-infection, followed by fresh BrdU in their

drinking water at 1 mg/mL each day until autopsy on day 7 post-

infection.

Cell purifications and in vitro restimulations

The bLN were taken as a source of LN draining the s.c. injection

site, and the parathymic, posterior mediastinal and paravertebral

LN (tLN) were pooled as a source of LN draining the thoracic

cavity. LN were dissociated and washed prior to being resus-

pended in RPMI-1640 with 0.5% mouse sera (Caltag-Medsys-

tems), 100 U/mL penicillin–100 mg/mL streptomycin and 2 mM

L-glutamine. Pleural cavity cells were isolated by lavage. CD41

CD25� and CD41CD251 T cells were purified in a two-step

process. CD4 T cells were first enriched by negative magnetic

selection using primary antibodies against MHC class II (M5/

114.15.2, in house), CD8 (53-6.72, in house), B220 (RAB632, in

house), CD11b (M1/70, in house), Gr1 (RB6-8C5, BD Bios-

ciences) and F4/80 (A3-1; Caltag-MedSystems), followed by

sheep anti-rat IgG magnetic beads (Dynal). Labelled cells were

magnetically depleted using a Dynal MPC-1 magnet (Dynal). The

cells were then stained for allophycocyanin-conjugated anti-CD4

(RM4-5, BD Biosciences) and phycoerythrin-conjugated anti-

CD25 (7D4, Milteny Biotech) and were sorted into CD41CD251

and CD41CD25� cell populations using a FACSAria running

FACSDiva software (Becton-Dickinson). The CD41CD25� T-cell

populations were 499% pure, and the purities of CD41CD251

T-cell populations were 497%. Irradiated (30 Gy) splenic APC

from naı̈ve mice were added to 96-well round-bottom plates at

1.5� 105 cells/well. A total of 7.5�104 CD41CD25� and CD41

CD251 T cells were added separately or in a 1:1 ratio. Whole tLN

cells were used at 5�105 cells/well. Cultures were stimulated with

medium alone, 10mg/mL LsAg, or 0.1mg/mL anti-CD3 (4C11, in

house). Supernatants were sampled at 72 h for cytokine analysis,

and 1mCi/well methyl-[3H]thymidine added for 16 h to measure

proliferation.

Antibodies and reagents

Antibody pairs used for cytokine ELISA were as follow: IL-4

(11B11/BVD6-24G2); IL-5 (TRFK5/TRFK4); IL-10 (JES5-2A5/

SXC-1); capture anti-IL-13 (38213, R&D systems); and biotiny-

lated polyclonal anti-IL-13 (Peprotech). Recombinant murine

IL-4, IL-10, and IL-5 (Sigma-Aldrich), and IL-13 (R&D Systems)
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were used as standards. Biotin detection antibodies were used

with ExtrAvidin-alkaline phosphatase conjugate (Sigma-Aldrich)

and Sigma FastTM p-nitrophenyl phosphate substrate (Sigma-

Aldrich). For flow cytometry (FC), non-specific binding was

blocked with 4mg of rat IgG/1�106 cells, and the following

antibodies were applied: phycoerythrin-conjugated anti-CTLA-4

(UC10-4F10-11), PD-1 (J43), peridinin chlorophyll protein-

conjugated streptavidin, allophycocyanin and Alexa700-conju-

gated anti-CD4 (RM4-5), biotinylated anti-CD25 (7D4), and

ICOS (7E.17G9), fluorescein isothiocyanate-conjugated anti-

GITR (DTA-1, in house). Staining for Foxp3 was performed

using fluorescein isothiocyanate-, phycoerythrin- and allophyco-

cyanin-conjugated anti-Foxp3 (FJK-16s, eBioscience). BrdU

staining was performed after the final Foxp3 staining step using

fluorescein isothiocyanate-conjugated anti-BrdU with DNase.

Staining was compared with the relevant isotype controls to

verify specificity. As the majority of CD41 T cells expressed low

levels of GITR when compared with the isotype control, FC plots

were gated on CD41GITRhi cells. To measure intracellular CTLA-4,

cells were permeabilized with BD Pharmingen’s Cytofix/Cyto-

perm kit, or with the eBioscience Foxp3 permeabilization kit.

Flow cytometric acquisition was performed using a FACScalibur

running CellQuest Pro software and an LSR 2 running FACSDiva

software (BD biosciences). Analysis was performed using Flowjo

(Treestar). Reagents were obtained from BD Biosciences unless

otherwise stated.

Statistics

Statistical analysis was performed using JMP version 7 (SAS)

according to the following strategy. The data were first checked

for homogeneity of variance and normality, which are two major

assumptions of parametric statistical analysis. If raw data failed

to meet the assumptions log10 or square root transformations

were applied, and the data were checked again. Whenever the

required assumptions were met, parametric analysis of combined

data from multiple repeat experiments, or of experiments

containing more than two groups, was performed using ANOVA.

For normal data from experiments with two groups, unpaired

t-tests were used to assess treatment effects. When using two-way

ANOVA to combine data from multiple experiments, experimen-

tal effects were controlled for in the analysis and it was verified

that there were no significant qualitative interactions between

experimental and treatment effects. If the data set did not meet

the required conditions for parametric tests, comparison between

groups was performed using the non-parametric unpaired

Mann–Whitney–Wilcoxon rank sum test (MWW). For analysis

of uterine egg and Mf contents, female parasites recovered from

the IgG control and anti-CD25 groups were pooled between

experiments. Prior to pooling, it was verified that the uterine

scores of the IgG and anti-CD25 groups did not significantly differ

among experiments using the non-parametric Kruskal–Wallis

test. Figures depict means whenever parametric tests were used,

and medians whenever non-parametric tests were used.
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